Choosing Shape Features by means of Genetic Algorithms for Glyph-clustering of Historical Documents

نویسندگان

  • Jan-Hendrik Worch
  • Björn Gottfried
  • Joachim Hertzberg
  • Michael Beetz
چکیده

The solution for a feature selection problem is presented in the field of document image processing. The choice of shape features for describing glyphs of historical documents is a non-trivial task since the variations of glyphs in different documents is innumerable. Hence, the manual selection of shape features would be a cumbersome task. To select a subset of features from a given set a genetic algorithm is used which optimises the result of a clustering process by x-means. The result of x-means is evaluated by using different quality measures. The optimisation methodology is illustrated within a case study, in which the selection of an appropriate set of features is a crucial part of the system. The intended application supports a user who is transcribing historical documents by showing him similar occurrences of a given glyph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

A Comparative Study of Some Clustering Algorithms on Shape Data

Recently, some statistical studies have been done using the shape data. One of these studies is clustering shape data, which is the main topic of this paper. We are going to study some clustering algorithms on shape data and then introduce the best algorithm based on accuracy, speed, and scalability criteria. In addition, we propose a method for representing the shape data that facilitates and ...

متن کامل

A Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders

Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...

متن کامل

GROUND MOTION CLUSTERING BY A HYBRID K-MEANS AND COLLIDING BODIES OPTIMIZATION

Stochastic nature of earthquake has raised a challenge for engineers to choose which record for their analyses. Clustering is offered as a solution for such a data mining problem to automatically distinguish between ground motion records based on similarities in the corresponding seismic attributes. The present work formulates an optimization problem to seek for the best clustering measures. In...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014